
NASA TECHNICAL NOTE NASA TN 0-7834

(NASA-TN-D-7834) APPLICATION OF A N75-12906
SIPARAMETER IDENTIFICATION TECHNIQUE TO A
HINGELESS HELICOPTER ROTOR (NASA) 68 p
HC $4.25 CSCL 01B Unclas

H1/02 06127Z J

APPLICATION OF

A PARAMETER IDENTIFICATION TECHNIQUE
TO A HINGELESS HELICOPTER ROTOR

by Gerd Kanning and James C. Biggers

Ames Research Center
M Fied, Cal 94035 NATIONAL TECHNICAL .o k

INFORMATION SERVICEMoffett Field, Calif. 94035 INFO ION SRVICE
U.S. DEPARTMENT OF COMMERCE

SPRINGFIELD, VA. 22161

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION * WASHINGTON, D. C. * DECEMBER 1974



1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA TN D-7834

4. Title and Subtitle 5. Report Date
December 1974

APPLICATION OF A PARAMETER IDENTIFICATION TECHNIQUE TO A
HINGELESS HELICOPTER ROTOR 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Gerd Kanning and James C. Biggers A-5289

10. Work Unit No.

9. Performing Organization Name and Address 760-63-01

NASA Ames Research Center 11. Contract or Grant No.
Moffett Field, Calif. 94035

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Note

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D. C. 20546

15. Supplementary Notes

16. Abstract

A mathematical model of a gyro-controlled, three-bladed hingeless helicopter rotor was

developed and parameters of the model were estimated using a parameter identification technique.

The flapping and feathering degrees of freedom of the blades were modeled. The equations of the

model contain time-varying, periodic coefficients due to the forward speed of the rotor. A digital

simulation of the analytical model was compared with wind-tunnel measurements to establish the

validity of the model. Comparisons of steady-state and transient solutions of the analytical model

with the tunnel measurements gave reasonably good matching of gyro angle but less satisfactory

matching of hub moment measurements. Further improvements were obtained by use of a parameter

identification technique to adjust as many as 10 parameters of the analytical model. The sensitiv-

ity of the blade response to small changes in the parameters was also calculated. The most sensi-

tive parameters were found to be collective pitch, blade twist, tip loss factor, blade to gyro

coupling constant, Lock number, and equivalent flapping hinge spring constant.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Helicopter parameter identification
Helicopter rotor modeling Unclassified - Unlimited

Mathematical modeling
Helicopters
Modeling Cat. 0e
Identification

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*

Unclassified Unclassified 68

*For sale by the National Technical Information Service, Springfield, Virginia 22151



TABLE OF CONTENTS

Page

SYMBOLS .. .. . . . . . . . . . . . .. . . . . . . . . . . v
SUMMARY . . ........................ . . . . . . . . . . . . .... 1
INTRODUCTION ................... .... . .. .. 1
DEVELOPMENT OF THE ANALYTICAL MODEL . ................. 2

Blade Equations ................... . .. .... 3
Gyro Equations ................... ..... . . . 5
Rotor Equations ................... ..... ... . 7
Method of Solution and Transformation of Equations to
Measurement Coordinates . . . . . . . . . . . . . . . .. 8

BEHAVIOR OF SIMULATION MODEL ................... .. 9
Parameters of Model ................... ... .... 9
Time Response. . . . . . . . . ............................ 10

APPLICATION OF PARAMETER IDENTIFICATION TECHNIQUE . . . ......... . . . 14
COMPARISON OF MEASURED AND SIMULATED DATA . ....... ....... 16

Discussion of Measured Data .. ........ ....... .. . 16
Steady-State Case: Locked Gyro . .................. 18

Transient Case: Free Gyro .. . . . ....................... 20

Discussion of Results . . . . . . . . . . . .. .. ... 24

CONCLUSIONS .... ............... .... .. . . .... 28

APPENDIX A - DERIVATION OF BLADE EQUATION . ............. . 29
Inertia Moments ................... ........ . 29
Aerodynamic Moment . . . . . . . . . .. ...................... . 31
Mechanical Moments . . . . . . . . . . . . . . . . . . . 36

APPENDIX B - DERIVATION OF GYRO EQUATION ... ........ .. . 40
APPENDIX C - HUB MOMENT CALCULATIONS FROM MEASURED DATA . ....... 48

REFERENCES .. ......... . . . . . . . . . . . . . . .... . . . 51
TABLES ..... ... . . . . . . . . . . . . . . . . . . . . . . . . 53

iii



SYMBOLS

A(t) time-varying matrix defined in appendix D (table 1)

a lift-curve slope equal to 6.28

B frame formed by vectors (1,b2,i33) which defines the blade
frame

B tip loss factor

b number of blades

(b1,b2, 3) orthogonal unit vectors defined as the B frame

C frame formed by vectors (~1,c2,c3) which defines the gyro cage
frame

transformation matrix between state variables and measurement

C2  coupling constant between blade and angular displacement of
gyro

CD  drag coefficient,
D (l/2)pV 2 TRb

CL lift coefficient,
L (1/2)pV2rrR

C1(),C2 (0),
C3(0),C(0, defined by equation (A35)
C5(),C6(P),

C damping constant for nonrotating part of swashplate,
s Nm/rad/sec (ft-lb/rad/sec)

CT  thrust coefficient,

R 2p(Rb2

c blade chord, m (ft)

c defined by equation (A20)

cn defined by equation (A20)

(c1,2,03) orthogonal unit vectors defined as the C frame

c0  damping constant about feathering axis (rotating axis),
Nm/rad/sec (ft-lb/rad/sec)
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D drag, N (ib)

I time rate of change with respect to inertial space

e hinge offset, m (ft)

F x force at hub in rotating coordinates along X axis, N (Ib)

Foy force at hub in rotating coordinates along Y axis, N (Ib)

FWD forward direction

T(t) column vector of forcing functions for rotor equations

G frame formed by vectors (gl,g2,3) which defines the gyro frame

GRM rotational speed of gyro, rpm

(gl,g2,g3) orthogonal unit vectors defined as the G frame

HG angular momentum of gyro, Nm 2/sec (slug-ft2/sec)

hLC distance from hub to load cell moment sensor, m (ft);

hLC = (O,O,hLCz)

h distance from hub to location of shaft moment sensor, m (ft);
s hs = (o,O,hsz)

ID diametric moment of inertia of gyro, kg-m
2 (slug-ft2 )

IG gyro inertia matrix defined by equation (B13), kg-m2 (slug-ft2)

IGE equivalent inertia of gyro ID + 1.5C2I kg- 2 (slug-ft 2)

13 polar moment of inertia of gyro, kg-m2 (slug-ft2 )

IxIy z inertia characteristics of blade, kg-m
2 (slug-ft2)

K stationary spring constant for swashplate, Nm/rad (ft-lb/rad)
S

K1,B2,B 3,5 defined by equation (A34)

kR ratio of gyro angular velocity to rotor angular velocity

k spring constant of blade, Nm/rad (ft-lb/rad);

kv = I 2 2 - 1 (3/2)e tan

vi



k e  spring constant about feathering axis, Nm/rad (ft-lb/rad)

L lift, N (lb)

M excitation of the gyro by the blade in the R frame along Xr,
Nm (ft-lb)

Mexcxc  x-component of Mexc in C frame, Nm (ft-lb)

Mexcyc y-component of Mexc in C frame, Nm (ft-lb)

MGx applied moment to gyro along X in the C frame, Nm (ft-lb)

MGy applied moment to gyro along Y in the C frame (Nm (ft-lb)

MLCx  load cell roll moment in stationary coordinates measured 0.914 m
(3 ft) below hub, Nm (ft-lb)

MLCy load cell pitch moment in stationary coordinates measured 0.914 m
(3 ft) below hub, Nm (ft-lb)

M moment about X axis in the B framex

M moment about Y axis in the B frame
y

MYaero aerodynamic moment about flapping axis, Nm (ft-lb)

Mxinertia inertia moment about feathering axis, Nm (ft-lb)

Myinerti a  inertia moment about flapping axis, Nm (ft-lb)

Mnmech mechanical moment about feathering axis, Nm (ft-lb)

Mymech mechanical moment about flapping axis, Nm (ft-lb)

Mxs hub moment in stationary coordinates (left roll positive), Nm
(ft-lb)

MYs  hub moment in stationary coordinates (nose-up positive), Nm
(ft-lb)

Mxr shaft bending moment about Xr axis 0.369 m (0.917 ft) below
hub, Nm (ft-lb)

Myr  shaft bending moment about Yr axis 0.369 m (0.917 ft) below
hub, Nm (ft-lb)

M ~x roll moment at hub in rotating coordinates (positive left roll),
Nm (ft-lb)

M y pitch moment at hub in rotating coordinates (positive nose-up),
Nm (ft-lb)

vii



n nth blade

p ratio of flapping natural frequency to rotor frequency

q dynamic pressure, 2 N/m2 (lb/ft2 )

R frame formed by vectors (rl,72,r3) which defines the shaft axis

system rotating at rotor speed

R blade radius, m (ft)

r distance along blade from center of rotation, m (ft)

(rl,2,F3) orthogonal unit vectors defined as the R frame

S frame formed by vectors (sl,s2,3) which defines the stationary
axis system of the rotor; also referred to as the inertial
frame

(s1,2,3) orthogonal unit vectors defined as the S frame

T rotor thrust, N (Ib)

t time, sec

URUTUP radial, tangential, and perpendicular wind velocity components,
m/sec (ft/sec)

u input vector

V airspeed, m/sec (ft/sec)

X,Y,Z right-handed coordinate system with the positive X axis aft
over helicopter tail section and the positive Z axis
pointing up

r
x ratio of radial distance to blade radius, -

Rb

xstate variable

y measurement vector

a= 6- angle between relative wind and blade chord axis - angle of
attack, deg

as angle of attack of hub plane

flapping angle of blade (positive up), deg

B precone angle, deg

viii



B1,B2,03 flapping angles of blades 1, 2, and 3, deg

cpaRb
y Lock number, y =

y
63 pitch flap coupling, deg

61 gyro angle, left roll positive, rotating coordinates, deg

62 gyro angle, nose-up positive, rotating coordinates, deg

Slag angle of blade, deg

o blade sweep'angle, deg

o feathering angle of blade, deg

e0 collective pitch, deg

01 blade twist, deg

0cyc cyclic pitch angle, deg

6 swashplate pitch angle, positive nose-up (stationary coordinates),
sp deg

e1,02,03 feathering angles of blades 1, 2, and 3, deg

6IC cyclic pitch, nose up at * = 0, deg

61S cyclic pitch, nose up at 4 = 900, deg

A inflow positive up, A + A x cos + x sin p
0 x y

V cos c

P advance ratio,

Vl swashplate roll moment input (stationary coordinates, positive
left roll), Nm (ft-lb)

V2 swashplate pitch moment input (stationary coordinates, positive
nose-up), Nm (ft-lb)

p air density, kg/m
3 (slug/ft3 )

inflow angle, deg

sp swashplate roll angle, positive left roll, stationary coordinates,
deg

azimuth angle measured in direction of rotation, deg

ix



o pitch link angle, deg (see fig. 3)

Sangular velocity of rotor, rad/sec

w blade flapping natural frequency, rad/sec

WG gyro angular velocity, rad/sec

W , , angular velocities of blade defined by equation (A3), rad/sec

WC/R angular velocity of C frame with respect to R frame, rad/sec

WC/S angular velocity of C frame with respect to inertial space,
rad/sec

WG/C angular velocity of G frame with respect to C frame, rad/sec

R/S angular velocity of R frame with respect to inertial space,
rad/sec



APPLICATION OF A PARAMETER IDENTIFICATION TECHNIQUE

TO A HINGELESS HELICOPTER ROTOR

Gerd Kanning and James C. Biggers

Ames Research Center

SUMMARY

A mathematical model of a three-bladed hingeless rotor with a high-speed

gyro in the feathering system was developed and parameters of the model were
estimated using a parameter identification technique. The flapping degree of

freedom of each blade was modeled by assuming the existence of a virtual

hinge near the hub. The feathering degree of freedom was modeled in conjunc-
tion with the motion of the gyro. The gyro prescribed the feathering

sequence to each of the blades. In the aerodynamic moment terms, the reverse

velocity effect of the retreating blades was included. The complete gyro and
rotor equations contain time-varying periodic coefficients due to the forward

speed of the rotor. A digital simulation of these equations was obtained to

generate steady-state and transient solutions of the mathematical model. For
steady-state operation, with the gyro inoperative, the model response was

matched quite accurately to the measured data by adjusting selected model
parameters with a parameter identification technique. For transient opera-

tion, with the rotor controlled by the gyro, considerably larger hub moments

were calculated than measured while calculated gyro angles were in reasonable

agreement with measured gyro angles. Application of the parameter identifica-

tion technique resulted in improved hub moment matching when as many as 10

parameters of the model were adjusted simultaneously. The sensitivity of the

blade response to small changes in the parameters was also calculated. The

most sensitive parameters were found to be collective pitch, blade twist, tip

loss factor, blade to gyro coupling constant, Lock number, and equivalent
flapping hinge spring constant.

INTRODUCTION

The application of parameter identification techniques to the problem of

estimating stability derivatives for fixed-wing aircraft has been reported by

many investigators (refs. 1, 2, and 3). These techniques have been applied
to helicopters more recently (refs. 4 and 5). In reference 4, stability and

control derivatives were estimated from helicopter flight data; in reference

5, the feasibility of estimating specific parameters contained in a rotor

math model was investigated. The results of reference 5 indicate that good

estimates of the parameters can be obtained with identification techniques.

However, in reference 5, the math model itself was used to generate the data

used in the identification procedure. This provides a check on the parameter
identification algorithm, but provides no information concerning the validity



of the math model itself. This limitation is removed in this report by use

of data obtained in the wind tunnel for the identification procedure.

A gyro-controlled hingeless helicopter rotor has been tested in the Ames

40- by 80-Foot Wind Tunnel. The rotor blades were relatively stiff with an

undamped natural flapping frequency of about 1.25 cycles/rev at 100 percent

RPM. An expository analysis of this rotor system is given in references 6
and 7 where calculated cyclic angles for trimming rotor hub and swashplate

moments were compared with experimental data at high advance ratios (> 0.5).
Vibratory loads on the same rotor at high advance ratios were studied in ref-

erence 8. The mathematical model used ii the above three references contains

simplifying assumptions that are valid only for high advance ratios. The

mathematical model developed here is valid for advance ratios below 0.5.
Although the wind-tunnel tests were aimed at the slowed-stopped operation of

the rotor and therefore emphasized high advance ratios, some data were

obtained for advance ratios less than 0.5. These latter data were used for

parameter identification in refining the parameters of the math model of the

rotor. In the math model, each blade of the rotor was allowed flapping and
feathering degrees of freedom independent of the others. The first blade

flapping mode was represented by rigid blade motion about a spring-restraint
virtual hinge. The blades were also swept forward by an angle Co from the

feathering axis, allowing flapping moments to be fed back into the feathering

axis and hence to the control gyro.

The behavior of the mathematical model for different inputs was investi-

gated by integrating the time-varying periodic differential equations forward

for several rotor revolutions. The simulation was compared with wind-tunnel
data during both steady-state and transient conditions. Steady-state and

transient responses for advance ratios up to 0.40 were used in the comparison.
Parameters of the model such as blade inertia, flapping hinge spring constant,
blade to gyro coupling constant, Lock number, tip loss factor, collective

pitch, and blade sweep angle were systematically varied using a parameter

identification technique to give the best match between the simulation and

the wind-tunnel measurements. The sensitivity of these parameters on the

output response was also calculated.

DEVELOPMENT OF THE ANALYTICAL MODEL

An analytical model was developed for a three-bladed hingeless rotor

with a high-speed gyro in the feathering system (fig. 1). A list of assump-
tions and the derivation of the equations are given in appendices A and B.
The complete rotor equations are derived as follows. First, the equations
for the blade motion are obtained; the equations for the gyro and gyro-blade
interaction are then derived; and, finally, these two sets of equations are
combined to yield the complete set.

2



Zb Zs Zr

FWD

/FWD Yb

. Blade No. 2

High speed gyro YB N 2

Blade No. 3

X Blade No. I Xs

\ Feathering axis Xr

Figure 1.- Gyro-controlled Figure 2.- Rotor-blade coordinate
hingeless rotor. system.

Blade Equations

The equations for the flapping and feathering motion are obtained by
writing the moment equilibrium about the hub. Figure 2 shows the coordinate
system used in writing the moment equilibrium. The Xs,Ys,Zs coordinates
represent the stationary axis system with the Xs axis rearward over the
tail section of the helicopter, the Ys axis to the right, and the Zs axis
upward. The positive direction of rotation about each stationary axis is

indicated in the figure. The azimuth angle P is measured positive from the
stationary axis Xs in the direction of rotor rotation. The positive direc-

tion of the flapping angle B, inplane angle C, and feathering angle 0 is

also shown in figure 2. The effects of the inplane motion are included in

the equations derived in appendix A. However, for the verification and dis-
cussions in this report, the equations are simplified by fixing the inplane
deflection at Co, the preset blade sweep angle. This simplification is
reasonable if resonance of the C motion is avoided (ref. 6). The moments
acting about the hinge point are the inertial, aerodynamic, and mechanical
moments. Each of these moments for the flapping degree of freedom is devel-

oped in this section. For the feathering degree of freedom, the equations
are developed in.conjunction with the gyro equations in appendices A and B

because the feathering axis is mechanically connected to the gyro system.
The inertia moment about the flapping axis is derived in appendix A
(eq. (A13)):

inertia = Iy - (I + I y2- I )Q2 + 3 -e Q 2
inerta y x yo 2 y Rb-e

-(I + I - I ) - (I - I )o20 (1)
x y z z y

3



The aerodynamic moment about the flapping axis is also derived in appendix A.
For linear aerodynamics with no stall effects included, the aerodynamic
moment is written in abbreviated form (eq. (A36)) as

Myaero = -Kl{-C2( ) + [-Cl(i) + c4(p)tan 63 1] + C3()0)1 + c4(p)eo

+C4(p)ecyc + C5()x ° + C6())Xx + CT()y 1 (2)

The coefficients of equation (2), defined by equations (A34) and (A35), are
repeated here for completeness:

K1=
2

B2  e2
B2 =

2 2

B3  e3

3 33

B 4 e

B5  e5B5 =
5 55

Cl(p) = o B4 + P(cos p + o sin )B3 + 1 p2 ( ° + Ccos 2 + sin 2p)B2

C2(*) = + (o cos 1 + sin *)B30 9 0

C3(*) = B5 + 2(C cos I + sin I)B4 + i2Q - cos 2p + sin 2)B3

C4(p) = B4 + 2p(Ctocos + sin )B3 + 2 -- cos 2P + sin 2) B2

C5() = B3 + P(U cos 4 + sin )B2

C6W() = B4 cos 4 + P(cos p sin 4 + 0 cos2p)B3

C7() = B4 sin i + P(sin 2p + - cos 4 sin )B3

The reverse flow region encountered by the retreating blade during for-
ward flight was modeled in the aerodynamic moment term of equation (2). The
reverse flow region was approximated by assuming that reverse flow existed



from an azimuth 2250 to 3150 and from the root x = p. The appropriate

changes required in the coefficients of the aerodynamic moment equation (2)

are given in appendix A.

The other moment component is produced by the spring restraint of the

blade at the hub. For the flapping axis, this moment is given by k (B-p),

where k represents the spring constant of the blade and (B- p) represents

the flapping deflection away from the precone position.

The mechanical spring moment for the flapping axis can be written as

(eq. (A37)):

Yme k (6 - p) (3)

The moment equilibrium about the flapping axis is now given by the sum

of the inertia, aerodynamic, and mechanical moments. The flapping equation

may be written by combining equations (1), (2), and (3) to form:

MYinertia + MYaero + Mymech = 0

which gives

I - (I + I 2 - I )2B I e (I + -(I + - )n - (I - I )C p28
y x yo z 2 y Rb-e x y z z y o

-Kl{-C2(); + [-ClM() + Ch4()tan 63 ] + C3(i)e 1 + c4($)o + c4(N)ecyc

+c5(*) ° + c6()xx + C7()Xy } + k (a- p) = 0

(4)

Equation (4) describes the flapping motion of each blade and will be used

later to develop equations for a three-bladed rotor.

Gyro Equations

The gyro of the rotor system modeled prescribes a feathering sequence to

the blades. The equations for the gyro are developed about its axes system

and the relationship of the feathering axes with the gyro is then established.
The coordinates used to derive the gyro equations are shown in figure 3. The

coordinates Xs,Ys,Zs and Xr,Yr,Zr are the stationary and rotating coordi-

nates of the blade as previously defined. The Xc,Yc,Zc coordinates define

the rotating coordinates of the gyro. The equations for the gyro are

obtained by expanding the angular momentum equation [dHG/dt] S = MRG This

equation is expanded in appendix B. In terms of the gyro coordinates 61

and 62, the equations for the gyro are (eqs. (B25) and (B26)):

5



IG6 1 + (13 2 kR - IG02)61 + (I nkR - 2 IG) 2 - nCs6 2 + C + K 61 - MXCx

= vlsin(P+ o) - v2cos(p+ O)

(5)

IG62 + (I3
2kR - IGn2)62 - (I3 kR - 2IG)61 + Cs61 + Csi2 + Ks62 - MexCy

= vicos(+ o) + v2sin(+ o)

(6)

FWD The left sides of the equations
represent the inertial properties of

the gyro, the spring and damper effects
zfz,,rz, (Ks,C s ) about the 61 and 62 axes, and

the excitation of the gyro by the,
blades (Mexcxc and Mexcy c ). The right

High speed gyro side of the equations represent the
roll (vl) and pitch (v2 ) moment inputs

y, of the pilot. The pilot input is via
. .v a moment (not displacement) applied to

o the gyro in the nonrotating frame.
The gyro responds to the input moment
as well as to moments applied by the
blades. The Mexcxc and Mexcy c terms

in equations (5) and (6) are the
Figure 3.- Gyro coordinates. moments applied by the blades and must

now be obtained from the feathering
equations of the blade expressed in the

gyro axes system. The moments contributing to the excitation are the blade
inertia and mechanical moments about the feathering axis. Aerodynamic moments
about the feathering axis are assumed negligible. In addition, flapping
moments coupling into the feathering axis due to the forward sweep of the
blade must also be included. The complete moment expression in the blade
frame, given by equation (B27), is expanded by substituting the appropriate
moments and then expressing the moment equation in the gyro axis system. The
excitation of the gyro by the blade expanded for a three-bladed rotor and
transformed to the Xc,Yc coordinates is given as (eqs. (B31) and (B32)):

Mex = C I- 1 L u)
S 6- 1 1 3 (I I )2(3 1

Mexcxc 2 a2 3 C- c\ 2 03) - 1 - 02

1 k 031) 1 e2- 1 0)2- -0-I,) 21 ; 3) + (I-Iy)

Xo2 (1- " 62- 3)+ k(g[-p ))- ) IB3- p )J (7)

6



Mexcyc - C2{-Ix(e2-~3) - ce (2-8 3) - (Iy)2( 2-83) - k6(82- 3 )

-(I +1 -I z)(2-83) + (Iz-I y) 02( 2-3) + o k [(B2-p) - (63- p)]}x yz zyo o p p

(8)

The gyro equations are now obtained by combiningequations (7) and (8) with

(5) and (6) and transforming the feathering angle 0 for each blade and their
derivatives to gyro coordinates. The transformation between 81, e2, e3 and
61, 62 is given by (eq. (A40)):

e. = C2 61cos(i-1) + 62sin(i-l) 2f ; i = 1, . .. , b (9)

where b = 3. Substituting the above transformation and its derivatives into
equations (7) and (8) gives the complete gyro equations for a three-bladed
rotor (eqs. (B35) and (B36)):

(I C2.Ix)i+ . cC2 1+Cs 1+(a 2kR iG2)61 2 z )26 21+Ks
G 2 2 2 z y

+(I30kR-2IG) i2Cs 62+C2(Ix+I I) 81 -  82- 1 3)-C2(Iz-y ) o2

x 1- 2- 1 -3)-Cok 1- (2-p)- 1 (B3-p

Sv 1sin( + o)-v 2cos (+ o)

(10)

I+ 1 C2 2 02ka 2 2 I )Q2 3 k C 26+K 62IG+ 2 2 cC62+0 2(3 2kR2  IG)62 2 2 2 2

-(13QkR-20 I 32c(, - c2(I - z Qi22-2 2
2IG)+'Cs'1 + -2f IxIY CC(I-Iy)0o-2( 2- 3)

- C2k [(82-8 )-(S 3- p)] = vicos(p-iI )+V2sin(+ O )

(11)

Rotor Equations

The flapping equation (4) was written for one blade. For the three-
bladed rotor, the flapping angle 8 and the feathering angle are subscripted
1, 2, and 3; for the azimuth angle k in equation (4), the substitution of
p, *+1200 , and *+2400 for each blade must be made, respectively. The flapping
equation can then be written as

7



ly-(Ix+yC2-1 )p26i+ 2 1 e .2,-(I+I -Ixi) i(Iz-Iy) Qo20 i

yi x y o z i 2 y R-e 1 x y z a z y o

-K C2 2i(i-1) -Cl (i-1) 2 +C (i-1) 2 tan 63+C3 (i- 1 21

+c4 +(i-1) 2111 (e +6 )+C5 [+( i-1) 2H x +C6 +(i-1) --- +CT +(i-1) ---J

+k (8i-ap ) = i = i, 2, 3 (12)

The feathering angle e and its derivatives in equation (12) are written in
gyro coordinates (see eq. (9)). In appendix A, the transformation equation
(9) has been applied to equation (12) to convert the feathering angles to gyro
angles. The equations for each blade are given in expanded form by equations
(A41), (Ah2), and (Ah3). The gyro equations with the feathering equations
interconnected for the three blades were written in gyro coordinates in the
previous section. The complete set of rotor equations is now given by the
two gyro equations (10) and (11) and the blade equations from equation (12)
for i = 1, 2, and 3.

Method of Solution and Transformation of Equations
to Measurement Coordinates

In this section, the transformation to measurement coordinates is dis-
cussed, followed by a description of the method for calculating time histories
from the math model.

The five equations discussed in the previous section (eqs. (10) and (11)
and eq. (12) for i = 1, 2, 3) are next written in first-order form for the
digital simulation. The first-order state variables are defined as follows:

1 61

X3 62

X4 2

x 5  1 
(13)

X6 81
x7

x8 i 2

x9 a3

810 
3

8-



Applying these transformations of state variables to the five rotor equations
gives the equations of the rotor in the form. = K(t)i + (t) (see table 1).
The equations were integrated using the Runge-Kutta, fixed stepwise integra-
tion routine. The output of the integration process produced flapping angles
and gyro angles. However, flapping angles could not be measured during the
wind-tunnel tests; hub moments were recorded instead. Therefore, a transfor-
mation was required to convert the flapping angles to hub moments. The trans-
formation from moments to flapping angles, derived in appendix C (eqs. (C12)
and (C13)), is given below:

Mx = k,( r 2 - 83) (14)

My = k 81 + 1 2 +  3 (15)

where the shearing force at the hinge was considered small since the rotor
was lightly loaded. Equations (14) and (15) were written in the form
y = ~i, where y is the vector of moments and i is the vector of flapping
angles. The complete set of rotor equations (x = )(t)x + F(t) and 9 = y) in
first-order form is shown in table 1.

The simulation and measurement results were both performed in the rotat-
ing coordinate frame Xr,Yr,Zr (shown in fig. 2). During the analysis of the
data, it was found in some instances that the hub moments and angles could be
better understood if the moments and angles were transformed to a nonrotating
coordinate frame at the hub center - the Xs,Ys,Zs frame discussed previously
(fig. 2). The transformations between these reference frames are also given
in appendix C.

BEHAVIOR OF SIMULATION MODEL

Parameters of Model

The nominal values of the parameters for the rotor and the gyro used in
the analytical model simulation are given in table 2. These parameters were
obtained by direct measurement or calculation.

The first flapping mode of the blade was represented by rigid blade
motion about a spring restraint virtual hinge located a distance e radially
from the hub center. The spring constant about this virtual hinge was calcu-
lated from

k8 = Iy 2 2 1 e tan 63) (16)

where

I blade flapping inertia

Q rotor angular velocity

9



p flapping natural frequency to rotor frequency

e virtual hinge location

Rb blade radius

y Lock number

63 pitch flap coupling angle

However, for this rotor, 63 was zero and the spring constant was evaluated

from the first three terms of equation. (16). The values for p in equation

(16) were obtained from reference 6 and are given as a function of percent
rotor RPM in figure 4. The values for I y, Q, and Rb were obtained by mea-
surement, while the virtual hinge location e was found to be between 11 to

15 percent of the blade radius (to be discussed later). The variation of
spring constant with percent rotor RPM with I = 363.4 kg-m2 (268 slug-ft2 ),

63 = 0, and e/Rb = 0.11 is also shown in figure 4.

3 Time Response

2 l0- The rotor flapping response for
different inputs was investigated by

8 k for Iy=363.4 kg-m 2  integrating the time-varying periodic
2- (68slug-ft 2) with differential equations forward for

"E e/Rb=.,,
z e p, several rotor revolutions. The param-

eters in the math model used to gen-
b x erate these time histories are given

x 4 in table 2 and those unique to the par-
Flapping frequency ticular case studied are given with

S2- rotor frequency the results in each figure. The vir-
* tual hinge location was fixed at 11

t I percent of the blade radius to illus-
0 0o 20 40 60 80 100 trate the model behavior. First, the

percent, rpm response of the rotor in hover was
obtained. Figure 5(a) shows the blade

Figure 4.- Blade flapping frequency flapping angles before and after a

ratio and blade spring constant step input of 20 was applied to the

as a function of percent rotor collective control at the start of the

RPM (100-percent RPM = 355.6). second rotor revolution. The gyro
angles and the hub moments are zero
since the swashplate moment inputs

were taken as zero for this run. The transient motion of the blade flapping
angles is shown for about one rotor revolution (fig. 5(a)) after which the
coning angle reaches a new steady-state value. Figure 5(b) shows the
response of the rotor in hover but with an incremental step swashplate roll
moment input of Mos p = 27 Nm (20 ft-lb) applied at the second rotor revolu-

tion (Ms p = 41 Nm (30 ft-lb) before the step input). The swashplate pitch

moment and the collective pitch angle were held fixed at Mosp = -14 Nm
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(-10 ft-lb) and 0, = 8.570, respectively. For this case, with moments
applied to the gyro, the hub moments are not zero. The transient response of
hub moments in rotating coordinates (R-frame), gyro angles, and blade flapping
angles are shown in figure 5(b).

Two additional transient responses were calculated but for the rotor in
forward flight with advance ratios of p = 0.212 and 0.485 (figs. 6 and 7).
Figure 6 shows the transient response of the blade flapping angles, gyro
angles, and hub moments for a step moment input applied about the swashplate
roll axis. The first two rotor revolutions in figure 6 show the steady-state
behavior with Mgsp = 41 Nm (30 ft-lb), Ms p = -14 Nm (-10 ft-lb), and

o = 8.570. At the second rotor revolution, an incremental step input about
the swashplate roll axis of 27 Nm (20 ft-lb) was applied while the swashplate
pitch moment and collective pitch angle remained the same. The transient
motion that followed is shown from the second to the eighth rotor revolution.

3.0

kq = 184,394 Nm/rod
-- (136,000 ft-lb/rad)

y4.57
EV = V0m/sec

= 1.5 Co 
= 9.5 Nm/rad/sec

(7 ft-lb/ rod/sec)
Cs= 108.5 Nm/rad/sec

m I (80 ft-lb/rod/sec)
8o

= 8.57, to 10.57
°

SI I I I II rotor=
3 3 .7 5 

rod/sec(90.6% rpm)
e/Rb= .11

3.0 -
= 0

0' O

3.0 0
Em

1.5 5

3.0

1o.5

a .Collective pitch step
m o input applied at this

revolution

0I 2 3 4 5 6 7
Number of rotor revolutions

(a) Response to a step collective pitch input at the start of the
second rotor revolution.

Figure 5.- Transient response at hover.
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6000 -
6000 - 0

Skp 
= 184,394 Nm/rod

E o 0 v-o
(136P02 

ft-lb/rad)

o
E 

= 33.75 rod/sec
I I I I I (90.6 %rpm)

S -6000 C 9.5 Nm/rad/sec
-6000 (7ft-lb/rod/sec)

0 Cs ='108.5 Nm/rod/sec
(80ft-lb/rad/sec)

6000 M = 27Nm to 40.7Nm
0 6000 - s (20ft-lb to 30ft-lb)

S-6000 = -13.6Nm(-lOft-lb)

E 0e/Rb = .11

6000
-6000 L

2 82

0

o

-2 I 11

S 2

0 0

Swoshplate step roll
F - moment input applied

at this rotor revolution

-2 
I

2 3 4 5 6 7 8
Number of rotor revolutions

(b) Response to a swashplate roll moment input at the start
of the third rotor revolution.

Figure 5.- Concluded.

In like manner, the same swashplate inputs were applied as when the rotor was
operating at an advance ratio of p = 0.485 (fig. 7). A comparison of the
transient behavior of the rotor at the two different advance ratios indicates
that for the lower advance ratio the response is sinusoidal, whereas for the
higher advance ratio the response shows the presence. of higher harmonic terms.
This effect is due to the periodic terms in the differential equations which
become significant at the higher advance ratios.
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6000
6000 p .212

ke = 18494 Nm/raod
V- (136p02 ft-lb/rod)

SV = 36m/sec(70knots)
E _ n = 33.75 rod/sec

-o00 I I (90.6% rpm)
C = 9.5Nm/rad/sec-6000 (7ft-lb/rod/sec)
Cs =108.5 Nm/rod/sec

(80ft-Ib/rod/sec)
6000 F MOP = 40.7 Nm to 67.8 Nm

0 6000 - sp (30ft-lb to 50fi-lb

MS Z -13.6Nm(-Oft-lb)

O .n e/Rb.Il

-6000 - I 
I I 

I

-6000 -

2 8

82
2

S~Swashplote step roll
moment input applied
aot this rotor revolution

-2 | I t I

I 2 3 4 5 6 7 8

Number of rotor revolutions

Figure 6.- Transient response to a swashplate roll moment input at the start
of the third rotor revolution for . = 0.212.
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6000

6 0 0 0 -sNs.4 8 5o kl=138P81 Nm/rad
I- (101843 ft-lb/rad)

E 00 =4.57
0- V = 46.3 m/sec(90 knots)

x =18.96 rad/sec
6000 - (51% rpm)

-6000 C= 9.5Nm/rad/sec
(7ft-lb/rad/sec)

Cs = 108.5 Nm/rod/sec
6000 (80ft-lb/rod/sec)

6000F M#s = 40.7 Nm to 67.8Nm
o (30ft-lb to 50ft-lb)

O r OM -13.6Nm(-lOft-lb

4 82

0 e/R

eo

0 -

o eSwoshplote step roll
' moment input applied

at this rotor revolution-4

2 3 4 5 6 7 8
Number of rotor revolutions

Figure 7.- Transient response to a swashplate roll moment input at the start
of the third rotor revolution for 9 = 0.485.

APPLICATION OF PARAMETER IDENTIFICATION TECHNIQUE

The parameter identification process is useful in redesigning and refin-
ing the parameters of the math model using wind-tunnel or flight measurements.
The parameters to be determined are those that appear in the coefficients of
the differential equations, such as inertia, spring constant, Lock number,
and damping constant. The general outline of the identification process is
sketched in figure 8. The same input U is applied to both the math model
and the plant ("plant" refers to the helicopter rotor test in the wind tun-
nel). The best values of the parameters of the math model are those that
minimize the difference between the model and plant outputs (f and Y). The
identification process is an algorithm that compares the outputs of the math
model and plant and adjusts the parameter values (inertia, spring constant,

14



damping, etc.) until this difference
is a minimum. What this minimum
should be is established by least-
squares fit within the limits ofNew values

of parameters table 2, and the identification algo-
rithm iterates until this criterion

M mlis reached. It may not always be pos-
sible to reach this minimum or even

o to obtain an improvement in the match-
u identification ing of the model and plant outputs.

algorithm This report does not address these
Vehicle problems, but will make use of the

(tunnel data) technique in obtaining, where possi-
ble, a better match between the simu-
lation and the measured data. For a
detailed discussion of the parameter

Figure 8.- Block diagram of parameter identification theory as applied here,
identification technique. see reference 9.

The identification program had the capability of identifying as many as
36 parameters of the mathematical model. For the results that follow, 6, 7,
and 10 parameter cases were studied. The choice of parameters was based on
the accuracy to which the parameters were known, the sensitivity of the param-
eters in affecting the response, and whether the parameters were linearly
independent. The accuracy to which the parameters were known a priori estab-
lished lower and upper bounds of variation for each parameter. A sensitivity
analysis of all parameters indicated wihich ones were most sensitive in affect-
ing the response. The linear independence or uniqueness of the parameters cal-
culated by the identification program is discussed in detail in reference 9.
Thus the parameters studied here were chosen on the basis of a priori knowl-
edge, sensitivity, and linear independence. Tables 3 and 4 present the param-
eters identified and their nominal values obtained from reference 6.

The computation time required to identify more than 10 parameters over
several rotor revolutions is large. The approximate time required to estimate
one parameter using one measured data point per iteration was found to be
about 1/20 of a second on an IBM 360/70 computer. This time could vary con-
siderably since the computation time is not a linear relationship of the
parameters estimated. Adequate reconstruction of the measured waveforms for
parameter identification purposes could be achieved by sampling the data every
150 in azimuth. The integration step size was allowed to become no larger
than 20. In some cases, a larger step size could be used, but the 20 step size
was found to be satisfactory in eliminating significant error accumulation
when the equations are integrated for several rotor revolutions.
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COMPARISON OF MEASURED AND SIMULATED DATA

Discussion of Measured Data

The measured data used to check the analytical model were obtained in

the Ames 40- by 80-Foot Wind Tunnel for a three-bladed, hingeless rotor with

a gyro coupled to the blade feathering axis. Figure 9 is a photograph of the

model in the wind-tunnel test section. This model was used to investigate

the behavior of the rotor under slowed-stopped conditions. For these condi-

tions, the rotor was operated near zero lift. Hence the measurements taken

during tunnel testing are for a lightly loaded rotor at relatively high

advance ratios. The following measurements were recorded: load cell moments

(moments in stationary coordinates 0.914 m below the hub), shaft bending

moments, swashplate moments and angles, and blade angles. Data were available

to check the analytical model and to identify parameters at forward speeds

from about 31 to 41 m/sec (61 to 80 knots) and rotor RPM from 148 to 197. A
complete description of the test and data collected is given in reference 6.

For the steady-state cases used to check the analytical model, the rotor was

operated in a locked gyro mode. For this mode, the swashplate was held fixed

at specified angles while the rotor flapping angles were allowed to come to a

steady-state condition. The transient data had been recorded by taking the

Figure 9.- Experimental rotor rig in the Ames 40- by 80-Foot Wind Tunnel.
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rotor out of trim and then allowing it to return to a trim condition. This
procedure amounted to a step change in the swashplate angle. The purpose of
this procedure was to establish the rotor transient independent of gyro
motion.

After the measured data were digitized and converted to engineering
units, it became apparent that some filtering of the data was necessary. A
low-pass digital filter with a corner frequency of 16 Hz was used to process
the transient data. The low-pass filter eliminated some of the high-frequency
noise and vibrations from the measured data without introducing any noticeable

phase shift for frequencies of interest here. Figure 10 compares the filtered
and unfiltered data for a typical transient run to show the quality of the
data and the results of filtering.

In comparing the digital simulation with the measured data, care had to
be taken to use the correct initial conditions in the model simulation. The
initial conditions required for the computer simulation were gyro and flap-
ping angles and rates and the moments applied to the swashplate. Since only

E 200
2000 200

2000- E 200 Filtered data
2000 _E

0 L 0 \

S-2000 I I I -20 --
o -20008 E

o No filtering of 200
2 load cell moments 5 [ 200

02000F 2000 o /
o.__ a A AO - -2 a -00- o -2,00 -2 -200-20 -2000

4
4000- S4000 O

1_- 4o
E -4000

4 4

2.- 4000 0
S - 4000 - Filtered data

0 -00 r' , , WI O0 f0

-4000- I 2 3 4 5 66 -4

Number of rotor revolutions a 0 2 4 5 6

Figure 10.- Typical measured transient data with and without filtering;
v = 0.355, V = 36 m/sec (70 knots).
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gyro angles and swashplate moments had been recorded for each record taken in
the wind tunnel, the gyro rates and flapping angles and rates had to be
established. The gyro rates and the flapping angles and rates were obtained
by entering into the computer simulation the known values of swashplate
angles, rates, and moments and integrating the equations to steady-state con-
ditions. The flapping angles and rates thus obtained served as the initial
conditions for the particular tunnel record compared.

The next section presents steady-state and transient runs for different
forward velocities and results obtained by applying the parameter identifica-
tion program to the measured wind-tunnel data. For a steady-state condition,
the gyro was held at a fixed attitude (locked gyro mode). For the transient
run, the gyro was free to move but under the influence of moment inputs to
the swashplate.

Steady-State Case: Locked Gyro

Figures 11 and 12 compare measured (discrete points) and simulated
(solid line) hub moments for two different forward velocities but with about
the same advance ratio. The main difference between these two cases is in p,
the dimensionless flapping frequency. The rotor was operated in a locked
gyro mode while the measured hub moments were recorded. In like manner, the
mathematical model simulation was forced with the gyro angles and moments
recorded during tunnel testing while the hub moments were allowed to vary.
The nominal values used in the simulation are given in figures 11 and 12 for
a virtual hinge e located at 11 percent of the blade radius. The math
model shows similar waveforms for the hub moments without the presence of
higher harmonics in the measured data. The vehicle moments are the 1/rev
moments in rotating coordinates and these moments are important in control-
ling the vehicle. The higher harmonics seen in the measured data are asso-
ciated with' the vibratory modes of the vehicle. An amplitude difference in
the math model results is apparent for both advance ratios studied. The
largest difference in amplitude occurs for lower forward velocity with
p = 0.402 and p = 1.62 (fig. 12).

The parameter identification program was applied and a number of param-
eters were adjusted simultaneously to improve the hub moment match. The
results of the hub moment matching obtained after 10 parameters of the math
model were identified are shown in figures 13 and 14, with the nominal values
and estimated parameters for each case shown in tabular form. The inflow,
uniform for both cases, was calculated from equation (A31). The spring con-
stant of the blade was decreased from the nominal value. The ratio of hinge
offset to blade radius (e/Rb) was allowed to vary and was found to be at 11
percent of the blade radius. The remaining parameters varied from 2 to 3
percent, which was the accuracy to which these parameters were known a priori.
Improvement in the hub moment match is shown in figure 13 after the param-
eters were varied from their nominal value. The large difference between the
measured and math model results for P = 0.402 (fig. 12) was considerably
reduced as shown in figure 14. A comparison of the identified parameters,
for the two steady-state cases studied, shows similar values of those
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Nominal values of parameters

V = 41.2 m/sec (80 knots)

rpm = 197 Nominal values of parameters

.Q 20.66 rad/sec (55.5% rpm) V= 31.3 m/sec (61 knots)

p = 1183 kg/m
3

(.00229 slug rpm= 148 .

CT 
= 

.00097 
= 

15.50 rad/sec(41.6% rpm)

141092 Nm ( 10 4  ft-lb) p = 1.188 kg/m
3 

(.00231 slugs/ft
3

)

rod rod CT= .0015
467 k = 125,214 Nm/rad (92 53 ft-lb/rod)
2Sp 215.69

S = -3.50=3.50' sp= 
3.42*

MOSp  98.3 Nm (72.5 ft-lb) sp -. 66 o

M S p = -34.2 Nm (-25.25 f t-lb) Mosp = 45.8 Nmrn(33.8 ft-lb)

e/Rb = .11 Mesp= 57.4 Nm (42.3 ft-lb)

e/Rb= .11

- 4000 --- Meosured data
- Math model 4000 -2000 - using nominal --- Measured data

-/ - values from - 4000 t Math model

0 / table 3 2000 - using nominal
S O 90 1 values from

-Z - I table 3

-2000 0 0E 20 40-00
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0 0 All 0
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Figure 11.- Measured and simulated Figure 12.- Measured and simu-
hub moments in rotating coordi- lated hub moments in rotating
nates; P = 0.399, p = 1.45. coordinates; j = 0.402,

p = 1.62.
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Nominal value of parameters Identified parameters

0o = 8.570 6, - 7970

B = .97 B = .95

C2  .87 C 2  .85

ly = 363.4kg-m
2 

(268 slug-ft
2
) I y 

= 
359.7 kg-m

2 
(265.3slug-ft

2
)

z
=  

363.9kg-m2 (268.4slug-fi
2
) I =y 360.2kg-m2(265.7 slug-ft

2
)

S= 4.67 y 5.13

14192N- (104,064 f lb) kg =29,345 d (95400 )
rod rod 13 rad rod

o = 1.5* Co
=  

1.6*

0, = 2.25* jp= 2.360

e/R =.11 e/Rb .11

4000

- 4000-
2000 --- Measured data

.i Moth model

using identified
0 - 0 parameters

Z

6 -2000

S4000 I

0 4000

- 4000-

2 2000 /

o oI
0 0

-2000- /

-4000

-4000- I I I

0 90 180 270 360
Azimuth q, , deg

Figure 13.- Measured and identified hub moments -

uniform inflow; i = 0.399, p = 1.45.

parameters allowed to vary. The inertia, tip loss factor, Lock number, blade

sweep angle, collective pitch, gyro coupling constant, and hinge offset were

the same after the identification for the two steady-state cases studied.

Transient Case: Free Gyro

In this section, the math model simulation output is compared with a

transient run recorded during vind-tunnel testing. In addition, the param-

eter identification algorithm was again applied to improve the matching of

simulated and measured data.

The transient measurements were recorded with the rotor operating in a

free gyro mode and with a step roll moment applied about the swashplate roll

axis. For the free gyro mode of operation, the gyro is free to move in

response to moments from the blades and swashplate. The step input applied
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Nominal values of parameters Identified parameters to the roll axis of the swashplate
8 =8.57 8, =7.97 was accomplished by taking the rotor
8j=.97 8 =.95 out of trim and then moving the
c2=.87 C2=.85 swashplate roll moment control
I y=363.4kg-m2 (268slug-ft2) IY=359 .7

kg-m2
(265.3slug-ft 2 ) quickly back to a trim position.

Iz=363.9kg-m2(2684slug-ft2 ) I= 360.2kg-m2 (2657slug-ft2) The transient run was obtained at a
fy=4.69 = 5.16 forward velocity of 36 m/sec (70

kp =125g4rNm (92.5. ft-lb Nm . 5 ( ft-'b,k=.125149253 ) k =87,651 (64648 knots) with a rotor speed of 192 RPM.
CO =,.5 C =104* The measured data had been filtered

e/Rb=11 e/Rb=.lI (discussed earlier) to eliminate the
4000 high-frequency components found on

2000 - --- Measureddata some of the recorded data. The nom-
2 using nominal inal values of the parameters used

0 values from
0 / table 3 in the math model simulation are

o , shown in table 2. Those parameters
S-2o000 unique for this advance ratio are

-4000 tabulated in the figures next to the
Smeasured response.

0 2000 -
SThe measured response (discrete

0 - 0\ points) of swashplate roll and pitch0 K moments, hub moments, and gyro

-2000 I / angles is shown in figure 15. The
--4000 mathematical model response (solid

o Azimuth o 360 line) of hub moments and gyro angles
is superimposed on the measured data.
Both measured and calculated hub

Figure 14.- Measured and ienti- moments and gyro angles are presentedFigure l.- Measured and identi-
fied hub moments - uniform in rotating coordinates. The swash-

inflow; .= 0.h02, p = 1.62. plate roll and pitch moment inputs
used as forcing functions in the
mathematical model simulation are
shown in the upper two traces of

figure 15. The step change of the swashplate roll moment is seen at the end
of the third rotor revolution while the swashplate pitch moment remained
unchanged. The initial conditions were obtained by forcing the math model
with the swashplate inputs prior to the step change in the swashplate roll
moment. Integrating the equations with these swashplate inputs until steady
state was reached produced the initial conditions required to start the math
model simulation. With these initial conditions, the measured and simulated
time responses for this step swashplate roll moment input are shown in the
lower four records of figure 15. Note that the gyro angles from the math
model simulation match the measured data fairly closely. However, the magni-
tude of the hub moments is considerably different for the simulated data com-
pared to the measured data.

Several identification runs were made so that a.different set of param-
eters could be identified to improve moment and angle matching. Figure 16
shows the matching of hub moments and angles when six parameters of the math
model were allowed to vary. Each parameter was allowed to vary over a per-
centage range from their nominal values. The percentage variation was
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Figure 15.- Comparison of math model simulation with measured data, i = 0.355.
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Nominal parameters Estimated value of parameters

0 = 8.570 o = 9.170
81 -9.43 9 = -10.93

Bj .97 B, = .955

S= 4.57 y= 4.0
kq = 138,752 Nm/rad(102338 ft-lb/rad) ka = 97,127 Nm/rod (71,637 ft-lb/rad)

to = 
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Figure 16.- Comparison of math model simulation with measured data usingsix estimated parameters, J = 0.355.
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established from the accuracy with which these parameters were known a priori

(table 2). Most parameters were known between 2 and 5 percent, although 
some

(such as virtual hinge location and spring constant) were 
known far less

accurately and therefore were allowed to vary over a large range. The hub

moment matching was considerably improved after only a few iterations, while

the angle matching remained about the same. The phase relation of the hub

moments between the calculated and measured data did not improve. The param-

eters that gave a better match of the time histories are also shown in

figure 16.

Figure 17 shows the matching obtained when seven parameters were allowed

to vary. In this case, all parameters were the same as in the previous case

except for the blade twist, which was held fixed while the 
flapping inertia

and hinge offset were additional parameters that could be adjusted. The

match of hub moments is not too different from the previous case. Slightly

better phasing of calculated and measured data was obtained for the first

three rotor revolutions. The parameters for this match are also shown in

figure 17.

One additional case was studied. This case differed from the previous

one in that the simulation was forced with the same gyro angles as had been

measured. The same parameters as for the seven-parameter case were allowed

to vary; the precone angle, advance ratio, and the mechanical advantage con-

stant were also allowed to vary from their nominal values. A total of 10

parameters could be adjusted by the identification program. Figure 18 shows

the comparison for this case and the corresponding identified parameters are

given in the figure. The gyro angles are in exact agreement in this case

since the math model was forced with the measured gyro angles. The hub

moment match is similar to that obtained in the previous case. The identifi-

cation algorithm forced the magnitude of the hub moments to be the same, but

better phasing of calculated and measured response over 10 rotor revolutions

was not obtained. Limitations in the mathematical model or in the measured

data used for the identification might have resulted in the lack of phase

matching.

Discussion of Results

The parameters obtained from the identification program for the steady-

state and transient cases studied are shown in tables 3 and 4. The tabula-

tion of the parameters for each advance ratio shows a consistency in the mag-

nitude of the estimated parameters. For the two steady-state cases investi-

gated, the estimated values of 10 parameter cases were similar. For the

transient run studied, some variation in the magnitude of the parameters was

found when a large number of parameters were estimated. Some of the scatter

in the estimated values of the 7 and 10 parameter cases may have been due to

noise present in the measured data. Also, for both the steady-state and

transient runs, the rotor was not lifting, which could make the contamination

of the measured signal by noise more significant. Two other factors that may

have influenced the lack of matching are deficiencies in the mathematical

model and the range over which the parameters were allowed to vary in the
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Nominal parameters Estimated value of parameters

8o= 8.57 00 = 9.17

BA =..97 E = .985
Iy =363.4kg-m2(268 slug-ft2

) Iy = 366.5 kg-m2 (270.3 slug-ft 2
)

, =4.57 y =4.0

k9=138752 Nm/rad (102338ft-lb/rad kg=97,127 Nm/rad (71637 ft-lb/rad)

Co= 1.5* Coo= 1.8

e/Rb= .II e/Rb= .15 Math model simulation with
estimated parameters

4000 A Measured data

-4000
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0 4000
0

0 zIII Q- I400I

4

-1 I I I I I I I I I _I

"'

-4

0 2 3 4 5 6 7 8 9 10
Number of rotor revolutions

Figure 17.- Comparison of math model simulation with measured data using
seven estimated parameters, = 0.355.
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Nominal parameters Estimated value of parameters

o0= 8.570 8o 
= 

9.17

Bt 
= .97 B = .9 8 9

C2 = .87 C2= .85

I =363.4kg-m 2 (268 slug-ft 2
) 1y =359.7kg-m

2 (265.3 slug-ft 2
)

y 4.57 y 
= 5.02

kj= 138,752 Nm/rad (102 38ft-lb/rad) ko= 97,795 Nm/rad ( 72,130 ft-lb/rad)

p= .355 = .348

o 
= 

1.5* o = 1.8

Op= 2.250 Op= 2.14

e/Rb=.ll e/Rb= .15
- Math model simulation with estimated

4000 - parameters - fixed swashplate angles
4000 L Measured data

EI

I -4000

g0 o0 -4000

-4000 L

4

-4I

0 I 2 3 4 5 6 7 8 9 10
Number of rotor revolutions

Figure 18.- Comparison of math model simulation with measured data using
10 parameters with fixed swashplate angles, a = 0.355.
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identification program. Only the flapping and feathering degrees of freedom
were modeled here. But the inplane degree of freedom as well as blade tor-
sional effects may be required in the mathematical model to obtain better
matching of the measured data. The other factor influencing the time history
matching is the limit imposed on the parameters over which the identification
program could search. The limits on the parameters were set by the accura-
cies with which the parameters could be measured or estimated. An example is
the spring constant of the blade, which is not constant for all rotor RPM and
therefore is more difficult to determine. The virtual hinge location e is
another parameter whose limits were not well defined. These factors will
influence the time history matching obtained.

Note again that the identification in all cases was carried out over the
first 2 or 3 rotor revolutions. But the comparisons of the simulated and
measured data using the identified parameters are presented for 10 rotor rev-
olutions. This was done to show that an improved match for a very short por-
tion of the measured data resulted in an improved match throughout the entire
transient range of the measured data. Convergence of the parameters to be
estimated was usually obtained after five iterations. Larger numbers of
iterations were performed and larger sets of parameters were estimated, but
hub moment and gyro angle matching were not improved.

The identification program also calculates the sensitivity of the output
to each parameter. The sensitivity was defined (ref. 9) as a dimensionless
ratio of the change in the output due to a change in the parameter. For this
model, the outputs are the roll and pitch hub moments and the roll and pitch
gyro angles in rotating coordinates. A list of the sensitivities for the
model parameters is given in table 5. Parameters of high sensitivity are
collective angle (e6), twist angle (eO) of the blade, tip loss factor (B.),
and blade to gyro coupling constant. The sensitivity of the next three param-
eters in order of decreasing sensitivity are Lock number (y) (or blade
inertia Iy,Iz), spring constant (k ), and advance ratio (p). Accurate mea-
surements of collective angle, twist angle, and blade flapping inertia can be
obtained as well as the Lock number (which can be analytically evaluated).
But the values of spring constant as modeled here are difficult to evaluate
since they are not constant for different flight conditions. The best method
for obtaining improved estimates for some of these parameters is through the
use of parameter identification techniques. The information gained from the
sensitivity analysis portion of the identification technique used here can be
very useful in determining where improvements in measurement or the analyti-
cal evaluation of parameters should be made.

It was found from the application of this identification technique that,
to obtain refinements of the parameters for the mathematical model, two con-
ditions must be satisfied. First, the mathematical model of the physical
system must be complete except for constant parameters. Second, the values
and the range of uncertainties for each of the unknown parameters should be
specified either from analytical techniques or from measurements. Subject to
these conditions, the identification technique is applicable to the estima-
tion of parameters of complex rotor systems from wind-tunnel or. flight data.
Moreover, the utility of the method is evident in the identification of those
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parameters that cannot be measured directly (such as the equivalent flapping

hinge spring constant), but are computed indirectly by the algorithm through

the complex relationship between the parameters and the measured response.

CONCLUSIONS

Comparisons of wind-tunnel data for advance ratios up to 0.40 with the

mathematical model simulation indicate that the mathematical model derived

here gives a reasonably good representation of the rotor hub moments in

steady-state operation. The match between the mathematical model and.the

measured data was improved by adjusting selected model parameters with param-

eter identification techniques. As many as 10 parameters were estimated

simultaneously.

For the transient runs with the rotor operating in a free gyro mode, con-

siderably larger hub moments were calculated than measured. However, gyro

angles during the transient operation were in close agreement with the math

model simulation. An improved match in the magnitude of the hub moments

could be achieved using parameter identification techniques, but phase match-

ing of the time histories over a large number of rotor revolutions could 
not

be obtained. More extensive mathematical modeling of the rotor is necessary

to further improve the time history matching.

The sensitivity of the blade response to small changes in the parameters

was calculated. The most sensitive parameters were collective pitch, blade

twist, tip loss factor, blade to gyro coupling constant, Lock number, and

equivalent flapping hinge spring constant.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., 9 4035, June 5, 1974
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APPENDIX A

DERIVATION OF BLADE EQUATION

The rigid blade equations are derived in three parts: first, the
moments due to inertial forces; second, the aerodynamic moments acting on the
blade; and third, the mechanical moments that balance the inertial and aero-
dynamic moments on theblade. Figure 1 shows the gyro-controlled rotor to be
modeled.

Inertia Moments

Figure 2 shows the right-handed coordinate system used to derive the
equations for the blade. The Xs,Ys,Z s  coordinates define the stationary
coordinates of the blade. The Xs axis points rearward over the tail sec-
tion of the helicopter while the Ys axis points out of the right side of
the hub. The Zs axis points upward following the completion of the right-
handed coordinate system. The coordinates Xr,Yr,Zr rotate at angular veloc
ity 0 of the rotor whose reference point is taken from the stationary axis
Xs . The positive directions of the flapping angle 6, inplane 1, and fea-
thering angle 0 are defined in figure 2.

In developing the inertia moments, the following definitions and assump-
tions were made:

(1) Only the first flapping mode is considered; it is represented by
rigid blade motion about a spring-restrained virtual hinge located a distance
e radially from the hub center.

(2) Blade feathering (pitch) is represented by rigid-body torsional
motion.

(3) All deflection angles (6, e, ) are small.
(4) The inplane degree of freedom is not represented.

The B frame (Xb,Yb,Zb) is defined by the rotations of B, t, and 0.
The equations are developed in the B-frame since it represents the principal
axes of the blade. The equations are then transferred to the R-frame (Xr,
Yr,Zr), which is also referred to as the shaft axis system of the blade.

The rotational equations of motion in the B-frame (blade frame) are
obtained by expanding the angular momentum equation for a rigid body (see
ref. 10):

Mx= Ix + (I - I y)Wa (Al

M = I y + (I - I )x z  (A2y yy x z xz

where the effect of hinge offset e will be added later. To further expand
these equations, the angular velocities and angular rates must be expressed
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in terms of the coordinates shown in figure 2. Since only the feathering and
flapping equations are developed here, the angular velocities Lx,IJV,w z and
the angular accelerations wx and wy are needed. In developing these terms,
small-angle approximations are made and terms small compared to 1 are dropped,
which gives (ref. 11)

x = sB - Br + 1
y (A3)

W = z + B0 +

!x .(A4)

y = + - 6- + A)

Equations (A3) and (A4) are substituted into (Al) and (A2) and then expanded.
In expanding these equations, some terms will cancel. Terms that involve
products of three or more angles are dropped from the expansion since they
represent higher-order effects that are not investigated here. The equations
for the feathering and flapping moments are then

M = ( + -(U -PB) + (Iz - I )[Q2(o - CE) + Q(- + 26) - ce] (A5)

M = I [-y + ( - c -0 ) + l + + ( -I )[+2 (+ - )

(A6)

which define the feathering and flapping moments in the blade frame. The
inplane moment equation was not retained in this analysis, although the
inplane degree of freedom is present in the Mx and M. equations. This was
done to model the forward sweep to  of the blade. Since no inplane motion
was allowed, the following substitution is made in equations (A5) and (A6):

5 = o, = 0, c = 0. Also, for later use, these equations are defined in
terms of their reaction moments Mxinertia and Myinertia. which are given by

the negative of the M. and Mv  equations. The equations in the B-frame
that result from the above substitution are

Mxinertia= -Ix( + - ko) - (I z - I )[q2( - oB) - ] (A7)

MYinertia Iy - n(6 - o)] - (Ix - Iz)[Q 2  + - o0)] (A8)

To the flapping equation (A8) must be added the term due to the effect
of the hinge offset e. The contribution to the flapping equation of the
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hinge offset is given by (3/2)Iy[e/(Rb-e)]28 (ref. 12) where e is the
hinge offset and Rb, the blade radius. If the effect of the hinge offset is
included in the flapping equation, the inertia moments in the B-frame are

Mxinertia -Ix 8-(Iz -Iy )2 X 0 ++Ixo-I +Iy-I z)+(IzI y ) 28 (A9)

MTinertia Iy +(Ix+ y- z x - (I z x y z 2 y R-e

(A10)

The above equations will now be transformed to the R-frame (or shaft axis
system) since the aerodynamic and mechanical moments are developed in this
reference frame. The transformation between the B and R frames for small
angles is given by

[ [I ] (All)

With the application of the transformation equation (All), the inertia equa-
tions (A9) and (A10) can be expressed in the R-Erame. In 2expanding the
equations in the R-frame, the approximation 1+C 1, xCo << I, and drop-
ping the IxCo6 term in the Myinertia  equation (because it was found to be

small compared to the other terms) gives

Mxinertia = -Ix +(Ix+Iy-Iz )2 on-(Iz-Iy)a28+(Ixiy )co0 -(x+I Yiz

+(I -I )C 28- - I e _ 2 (Al2)
x y o 2 yo Rb-e

Myinertia = I y-(I+I z 2  b-e 28 -(I+Iy- -(I y

(A13)

Equations (Al2) and (A13) define the feathering and flapping moments of
inertia in the R-frame.

Aerodynamic Moment

The aerodynamic moment is developed from the normal and tangential
velocity components at the blade. The assumptions made in developing the
aerodynamic moments are:

(1) The aerodynamic center of the blade is at the quarter chord.
(2) The inflow angle is small.
(3) Two inflow models were used - a uniform and a nonuniform model.
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Zb (4) The blade element lift

Blade chordoxis coefficient curve is linear.
(5) The reverse flow region of

cn cA| up the rotor was taken from 2250 to 3150
-li wn azimuth.
Relative wind axis

The coordinates used to develop
Resultant \ Hc the aerodynamic moments are shown in

\ -sketch (a). The aerodynamic moment
b about the flapping axis is given by

cd taero = -c c qr dr (A14)
e

In the reverse flow region, the

limits of integration of equation

Sketch (a) (Alh) were changed to account for

the loss of lift in this region.
The reverse flow region was taken
from an azimuth angle of 2250 to 3150.

In this region, the lower limit in the aerodynamic moment equations was set

equal to the advance ratio p. Although the exact reverse flow region in for-

ward flight is given by a circular disk of diameter p (for the blade radius

normalized by Rb), this approximation was used since it was more easily

implemented for computational purposes. To expand equation (A14), expres-

sions for the tangential velocity and perpendicular velocity components must

be obtained. The dynamic pressure is given by

q = p 1 + (A15)

Since (Up/UT)2 << 1, equation (A15) becomes

q = p(U2/2) (A16)

From sketch (a), the angle of attack a of the blade is

a = - (A17)

The inflow angle # is

= tan-'(Up/UT) (A18)

but, for small ¢, a small-angle approximation is

= Up/UT (A19)

For a symmetrical airfoil,
c ct = aa (A20)
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Substituting for a in equation (A20) yields

c = a( - (A21
n U

The tangential and perpendicular velocity components required in equa-
tion (A21) are given by (ref. 11)

UT = R Rb  + re cos + sin (A22

U= Rb r + + Pa cos ¢ - (A23

Neglecting the offset hinge aerodynamically and substituting = Co, = 0
yields the tangential and perpendicular velocities:

UT = O + 0 cos p + psin (A24

Up = ORb + + P cos - ) (A25

Now let

x = r/Rb

then r = Rbx (A26

dr = Rbdx

The aerodynamic moment about the flapping axis can now be obtained by
expanding equation (Al4). Substituting equations (A16) and (A21) into (A14)
yields

MaecpaZ b2 (eUT - UpUT)r dr (A27

The pitch angle 0 represents the sum of the following angles:

8 = 6(x) = + c + x6l + tan 63  (A28
o cyc

where 0o is the collective angle of the blade, 6cy c is the cyclic pitch

angle, 81 is the twist angle of the blade, and 8 tan 63 represents the con-
tribution due to a 63 hinge. Equation (A27) can now be expanded by
substituting equations (A24), (A25), (A26), and (A28):
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-opaRb 22 rB
yaero -= J x+° co1s L+P sin )2(e +0 +x01+B tan 3)
Myaero - 2 e/R bo1 0 0 cyc

-(x+pcos *+P sin ) +xo +p cos -X-X x. cos -Xx sin P x dx

(A29)

In the above equation, either a uniform or a nonuniform inflow model can

be used. The inflow A is expressed as

A = A + Ax cos + Ax sin P (A30)
o x y

where Ao represents the average inflow and Ax and A~ represent a linear

variation of inflow across the disk. The above equation for A was used to

integrate the aerodynamic moment equation (Maero) along the blade span given

by equation (A29). For the uniform inflow calculation, Xx and X were set

to zero. The magnitude of 10 for a given forward flight condition was then

calculated from the following relationship (ref. 12):
(1/2)C

tA = a (A31)
o Is (p2 + X2)1/2

For the nonuniform inflow calculation, 0o, x, and XA were estimated from

measured wind-tunnel data for a particular flight condition. Equation (A29)

is integrated from the hinge offset location to the tip of the blade (or tip

loss factor since the equation has been normalized by x = r/R), and making

use of the definition of the Lock number

Y c- (A32)

gives, for the aerodynamic moment about the flapping axis,
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yI4 F B 23 .

o- T [4 +(cos n+(osin +) +3 2 co s 2+sin 2 )

S eN'( B e[ 

( B

xL [ s2+i o(ocos 2+sin_

- 2 + (osin 2) B 2] tan 63+ -

+2ip cos ?+sin - ~)2 - cos 2 + sin 2 - -3 61

+ - +2p(Ccos +sin 1) ( - 3 )+2(. Cos 2+ osin 2*)

x (o8 +8- 3oos $+sin *) k 4 1x o eye0

+ [( - e cos *+P(cos * sin +OCos2P)( - e

yI = 2 _ 23 -3 - --

( 3 
35

(A34)

B4 = - BS = - -T
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CB1() = 4B  + (cos 4 + osin ')B3 + 1L 2 (o + cos 24 + sin 2o)B

C2(*) = + I (C cos V + sin )B3

C3() = B5 + 2(C~ cos i + sin )B4 + - cos 2 + sin 2 3

C4() = B4 + 2p(0 cos * + sin )B3 + i2 - cos 2 + sin 2)B2 (A35)

C5(M) = B3 + (C0ocos 4 + sin ')B2

C6(*) = B4 cos ' + i(cos ' sin * + ocos2*)B3

C7() = B4 sin ' + P(sin2 + Cocos sin *)B3

The aerodynamic moment about the flapping axis can now be written in 
a

more compact form by use of equations (A34) and (A35):

Myaero = -Kl{-C2(4*) + [-CI(0) + C4()tan 63]8 + C3()e 1 + C4()eo

+C4(,)ecyc + C5()o0 + C6(P)hx + CT(P)Xy } (A36)

For the reverse flow region, the lower limit of equation (A29) is equal

to p, which results in a change of the e/Rb terms in equation (A3h) to the

advance ratio p. In the simulation of equation (A36), the appropriate coef-

ficients were substituted when the retreating blade was in the reverse 
flow

region.

The aerodynamic moment about the flapping axis is given by equation

(A36). The aerodynamic moment about the feathering axis was found to be very

small and therefore was not included in the analysis.

Mechanical Moments

The inertia moment about the feathering axis of the blade is balanced by

gyro moments and the flapping moments that couple into the feathering 
axis

due to the forward sweep (To ) of the blade. In addition, spring and damping

moments about the feathering axis must be included. This moment balance is

established in appendix B where the complete gyro equations are developed.

For the flapping degree of freedom, the inertial and aerodynamic moments are

balanced by the spring restraint of the blade with spring constant k,. The

mechanical moments about the flapping axis can then be written as
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Y mech = k (8 - 8 ) (A37

where 8 and Bp are the flapping and precone angles of the blade. The sum
of the inertia, aerodynamic, and mechanical moments about the flapping axis
must sum to zero to obtain a moment balance. The resulting equation for the
flapping axis is then

I -(II +I 2-I )2+ 2 1 e 2 (- +2~-(I ) e-(I -I) r 28-Kl{-C2(*)8
y xyo z 2  y Rb-e x y z y o

+[-Cl(p)+C4h()tan 631]+C3()e 1+C4(*) o+Ch() cyc+C5()X o+c6 ()Xx+C7() y I

+k (6- ) = 0 (A38

This completes the development of the blade equations. The abbreviated nota-
tion for the aerodynamic terms in equation (A38) was used to simplify the
equation in the main body of the text. In the remainder of this appendix,
the flapping equation is developed for any number of blades from which the
equations for the particular three-bladed rotor are obtained. The flapping
equation (A38) can be written in general terms for any number of blades as

I i.-(I +I C2-1 )22 + I n2 e 2i-(I +I -I )Q i(I y) 02eyi x yo z i 2 yR-e i x y z i z y o i

-K C2[+(i-1) - Cl+(i- 1) 2 +C +(i- ) 2] ta n 63

+C3 9+(i-) 21161+c4 +(i- ) 211 (e +e )+C5 +(i-1) 2HA

C6 (i) x+CT +(i) +k i- ) = 0 ; i = 1,2,...,b (A39)

where b is the number of blades. The feathering angles in equation (A39)
are expressed in terms of gyro coordinates 61 and 62. The feathering angle
8i  is transformed to gyro coordinates 61 and 62 by

i = C2 6icos(i-) 21 + 62sin(i-1) -- i = 1,. . .,b (A40)

The derivatives of the feathering angles are obtained from equation (Ah0) by
differentiation. Equation (A39) can now be expressed for a three-bladed
rotor by varying the index i = 1, 2, . . ., b where b = 3, and by transform-
ing the feathering angles and their derivatives with equation (A40). The
complete flapping equations for the three-bladed rotor expressed in terms of
the flapping angles and gyro angles are given by
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I +i( 4I C2..j )02 1 31 ,. Q22$-(I +I )QC2 1-(,I ) 0Q2C6
y x y 0 Z 2 *~ y +1 YIz

2 +44 + cos 1p+sin l)B3I1 [CLB +1 (cos +$- sin *p)B3

2 00 01 o~

+0sin 2*)B+],tan 63+[B5+2p(C 0cos +sin - cosjj 2 P-I-sin 21)B3]6,

+[B4+21j(Ccos i+sin p)B3+J(.- cos 2 p+C sin 4B]O+cc

+[B3+j(C 0cos *+sin OpB21X 0+[B4 cos *+p~(cos p sin +C 0cos 2i)B31X

+[B)4 sin *+pi(sin 2tp+C cos * sin )B31X +k,( ,-$ ) = 0 (A41)

2+ 22J +I - 0

-( I- 0 QC2 6-+ 2f:T - -2 B4 + IL [ cos(ip+1200)+sin(IP+1200 )]B3J

' 2- B+p~os(+120)+.sin(t+1200YJB3+ 1 p12[ +C cos 2( p+12 0 )
100 2 0 0

+sin 2(t+120O)1B2}1 2 +{IB4+21J[C 0cos(lp+12Oo)+sin( P+120O)]B3

+2[1- 17Cos 2GP+12O0 )+Cosin 2GP+1200 )]B2} 2tan 63+(B5+21j[~c0 osP+12Oo)

-isin( +120O) B4+p2 - 27 COS 2Gp+12O0)+C sin 2(VP-I12 0 )JB3)01

+{B4+2w[CocosGP+12o)+sin( P+120O)1B3+ 1 7 - 7cos 2( p+12O0)+C sin 2( p+12Oo)

xB2) (0 +0 )-i{B3+iiI0 cosG+12 0)+sin(*+12O0 )1B2}x 0{B4 cos(4'+1200 )

+v[cos(p+12Qo)sin(1+120)+ 0cos2(ip+12Oo)B31X +{B4 sin(p+1200)+ii[sin2 (*+1200 )

0 =o(+2Osn 10)B} o)+ a- (A42)
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y x yo0 z 2 yR-e ~ x y- z \ 2 2y

-(I -I ) 02 C2 -L. Bh6. f (K [C cos(fri240)+sin(*+24oo))B3)z y 0 2 (2 22 £ 0

+sin 2Gp+214oo)3B2j) g+ 1 B4+2p[C 0cos(, +240)+sin( +24oO)]B3

T -17COS 2(iJ+24O0)+C sin 2(i*+24oo)] B2JI 3tan 63+f1B5+2ia[C 0cos(1P+2400)

+sn(p220 - cos 2(*-I24O 0)+ sin 2(* I24oo)J B31 01

+I42[oos 20)si] 20)B3+w1[7 - 7COS 2(*+24O0)+c 0 sin 2( l+2h00]

xB2)(6 + 0 )+{B3+1[Ccos(1p+24oO)+sin(1+2oo)B2}X +{B4 cos(p+2400 )

+pcs 20)i(+4o+ o2 2o)B1 Bldsin( p+24O)+v[sin2(*+24oo)

0 cos(1P+24oo)sinGip+24Oo)]B3}) +k 03-a~ p 0 (A43)
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APPENDIX B

DERIVATION OF GYRO EQUATION

The gyro of the rotor modeled was located at the top of the rotor head

and was operated at about 10,000 RPM. The gyro and the rotor head are shown

in sketch (b). This sketch is shown here only for mathematical modeling pur-

poses and does not necessarily represent the exact mechanical connection of

the gyro with the rotor. The Xs,Ys,
z S,' Z, Z ~Z s  coordinates represent the sta-
g z ionary coordinates of the rotor.

Since the body motion of the helicop-

S orward ter was not modeled, the Xs,Y,Zs
coordinates also serve as the inertial
coordinates for the development of the

gyro equations. The Xr,Yr,Zr coor-
S9 dinates are the rotating coordinates

S or the shaft axes of the blade while

the Xc,Yc,Zc coordinates are the
coordinates of the gyro at an angle

X, 81 o from the Xr,Yr,Zr frame. One
S x9 more coordinate system must be

x, defined for the gyro itself since it
Sketch (b) rotates at a much higher speed than

the rotor. This coordinate system is
defined by the XgYg,Zg axes system.

With the definition of these coordinates, the gyro equations and the equations
for the gyro-blade interaction are derived.

The rate of change of angular momentum of the gyro is given by Newton's

second law:

[ ] = MG 
(Bl)

where the angular momentum of the gyro is

H= I • W (B2)

Since no body motion was allowed (as mentioned in the definition of the coor-

dinates), the stationary frame Xs ,Y s ,Z s  serves as the inertial frame in the

development of the gyro equations.

The rate of change of angular momentum of the gyro with respect to the

C frame is expressed as

G [ + x G/ =MG (B3)
G dt C C/S " G/S
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To expand equation (B3), the angular velocities between reference frames
must be established. The angular velocity of the gyro with respect to
inertial space is

G/S = 'G/C +C/R + R/S (Bh)

The angular velocity of the C frame with respect to inertial space is

WC/S = 'C/R + 'R/S (B5)

The angular velocities in equations (B4) and (B5) are

G/C = [C1,2,c] 0 (B6)

WC/R = [g1,g2,g3  
(BT)

;R/S = [glg2,3] 0 (B8)

The transformation between the C and G frame, considering only small
angles, is

1 0 -62 91

2 =0 1 61 92 (B9)

C3 62 -61 1 3

Equation (Bh) can be expressed in the C frame by use of equations (B6),
(BT), and (B8) and the transformation equation (B9):

GW/s = [ c ,c3]2 + 0 6 1  (B10)

where mG = w + 0 and terms such as S162 and 6162 are considered negligible.

The angular rate wG/S can be obtained from equation (B10) by

differentiation:
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SG/S = [cI,2,3] 2 + (1l)
0

Equation (B5) can also be expressed in the C frame by use of equations

(B7) and (B8) and transformation equation (B9):

C/S = [s1,2, 3 2 I6 (B12)

Since the gyro is modeled as a disk, the diametrical inertias are equal,

defined as IG = I1 = 12. The inertia through the center of rotation of the

disk is 13. The inertia distribution of the gyro is then

I = [l,B2,l3] 0 IG  0 2 (B13)

0 0 13 3

Substituting the above equations for the angular velocities, rates, and

inertia distribution into equation (B3) gives the following equations for the

gyro:

IG1 + (13aWG- IG 2 )61 + (13W - 20IG)4 = MGx (B14)

IG 2 + (I330 - IG 2)62 - (I3G - 2QIG)61 = MGy (B15)

For a high-speed gyro, WG will be some multiple value of the rotor

speed 0. Hence let

G = kR (B16)

where kE is some multiple of the rotor speed. Substituting equation (Bl6)

into (Bi4) and (B15) gives for the gyro equations:

IG 1 + (I3 2kR - IG2)1 + (13kR - IG) 2 = MGx (B17)

IG2 + (I302kR - I 2)62 - (I3k R - 20IG)61 = MG, (B18)

In the following section, the external moments MG, and My of equations

(B17) and (B18) are developed.
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Zs,Zr,Zc
c First, the pilot's swashplate

roll and pitch moment inputs (vl
and v2 ) and the swashplate damping
and spring terms are developed and,
second, the excitation of the gyro
by the blade is derived. The sum
of the above moments in rotating
gyro coordinates constitutes the
external moments MG and MGy. A

cx_ B sP sketch of the gyro disk with the
Xc 2 springs, dampers, and moments

C, s inputs is presented in sketch (c).
K 82 Ks Cs These moments were measured in the

/ S Y stationary axis system (Xs Ys ,Z s )Spring and damper 'Xr Spring and damperst rassy t t
in stationary frame in stationary frame and must be transferred to the
about roll axis about pitch axis. rotating gyro axis system (Xc , Y c

Zc).

Sketch (c) The moments in the stationary
axis system due to pilot input and
the spring and damper are

Mxs = V1 - C ssp - K ssp (B19)

Mys = V2 - C ; - K (B20)

The above equations must now be transformed to rotating coordinates since all
equations in this development are expressed in the rotating coordinate system.
The transformation between the stationary and the rotating coordinates is
given by

[1 sin(p+ 0) cos(+VFC] (B21)
S -cos(+0) sin (t+io) [ 2]

or, between gyro angles and swashplate angles, by

isp = sin(+*o) cos(+)o I(2

] cos( +0 )  sin(*+ o 2

Equations (B19) and (B20) can be transformed to rotating coordinates by apply-
ing transformations (B21) and (B22). In addition to the pilot input and the
spring and damper moments, the excitation of the gyro by the blade Mexcx c

and Mexcyc must be added to give the complete set of applied external

moments for equations (B17) and (B18):
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MGx = 1sin( + ) - v2 cos(* + + Cs6 2 - C6 - s61 + Mexc
(B23)

M = v1cos(* + o ) + v2sin(* + 0) - 61 - C 62 - K 62 + Mexcyc

(B24)

The gyro equations can be written from equations (B17), (B18), (B23), and

(B24) as

IG61+(I32kR-IG2)61+(I3QkR-2QIG)2-CCs2sl+Ks61-Mexcxc

= vjsin(+4o )-V2cos(I+o0 ) (B25)

IG2+(I3 2kR IG2)62-(I3kR-2'IG)61+'Cs61+Cs62+Ks62-Mexcyc

= vicos(4+o)+z2sin(4+ o) (B26)

The only remaining terms to be expanded is the excitation of the gyro by

blade Mexcxc and Mexcyc . These are the moments in gyro rotating coordinates

(Xc,Yc) which are transmitted through mechanical linkages from the feathering

axis of the blade. The moment about the feathering akis for one blade in the

rotating blade coordinate (Xr,Yr,Zr) system is given by (ref. 13)

Mexc= o Myech + Myinertia+ Mxinertia -ke- C (B27)

The moments Mymech and Myinertia are the mechanical and inertia moments

that couple into the feathering axis because of the forward sweep Co of the

blade. The inertia moment about the feathering axis is given by Mxinertia*

The k66 and c6 terms represent the spring and damping effects about the

feathering axis. Equation (B27) is expanded by substituting for the inertia

and mechanical moments from equations (A12), (A13), and (A37). In the expan-

sion, the approximation is made that 1+o2 1 and Ixlo is small compared to

other terms in the equation:

M = -I x-c e-(I -I ) 2e-k e-(I x+I -I )OB+(I -I )o 028+o k (8- )
exc x y xy z z o o p

(B28)

The moment equation (B28) is expressed in the rotating system of the blade

(Xr,Yr) and is now transferred to the gyro axis system (Xc,Yc). The accom-
panying sketch (d) shows the three-bladed rotor treated in this development
with the rotating frames of the blade (Xr,Yr) and the gyro (Xc,Yc).

The moment Mexo about the feathering axis of each blade (sketch (d))
will be resolved along the (Xr,Yr) axis and then transformed to the (Xc,Yc)



Forward

Mex,(~0282) Blade No. 2

120*

Mexc. 3

120P /\ 120 r

I Mexc(189 Yc

Xc

Blade No. I

X,

Sketch (d)

axis through a mechanical linkage constant C2 . The excitation of the gyro
by the blade is then given by

Mexcx = C2 ex 1,1) - Mex (2,2) - Mex c(3,e3 (B29)

excyc = C2 exc 2 exc(B (B3

Substituting for each moment in equations (B29) and (B30) from (B28) with the
appropriate feathering and flapping angles for each of the three blades gives
the following moment equations:

61 - 162- 163 ;- i)2- i (iz ly)2 el_- i e2L I

1 02- e*3)-(1 +1 1 * 1 1 1

e z 2 2

+(I -I y) Q2(a1 - L 2- 83)+, okB(l-p)- (2-8p- (3-ap

(B31)
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Mexcy c2{ (2( 3)1 (Q2 3)(TT)2(e2-e3)-ke (e2e-63)
Mxey c  2 c,2-Ix8b2-63)-ce Z e

-(Ix+ -Iz )Q(82-83)+(Iz-Iy )c 0 2 (82-83)+ ok8 (82- 8p)-( 3-8p

(B32)

The feathering angle 60 (i = 1,2,3) and its derivatives are now written in

terms of the gyro coordinates 6i (i = 1,2). The relationship between 0 i
and 6 i  and the derivatives can be obtained from equation (A40). Applying

this transformation to equations (B31) and (B32) gives the excitation of the

gyro by the blades in gyro coordinates as:

a C2I 2" 3jl' C 2(Iziy)262 3 2
Mexcxc = - c2 - C2 2 )21- kC261Mexc 2 2 x1  

2 ce21 0( 1 
-C2(Ix+IyIz)Q( - 2 3)+C2(i Iyo2 1-  82-

- C2(Ix+I y z )2( 23)+ 2 0 2
32 x y 3 2 _ )Q 2

2 - Z C2(Iz-Iy)0 2 (  2 - g )

+ C2k[ (82- )-(83- p)] (B3h)

Equations (B33) and (B34) are combined with equations (B25) and (B26 ) to pro-

duce the complete gyro equations for a three-bladed rotor:

(I+ 3 C2,IjI + . c3 C 2.+Cs 1+(I3Q2kRG2 2)61+ C2( z_-I )Q261+ 2k C26 1+K 61

+(I3kR-2QIG);2-QCs2CC2 (Ix+I-I -  2l 1 33 2- 1 C2 C02

x(BC1 - 2 ) B 3)1 Cok (8 ) 3-p

= visin(1+@ )-v2cos(+0)

(B35)
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(G C1>+ 2c0 22+CS62+(I3 I~2G)62+ 2 2 22K6

~C2 C k~ [(2-% )-( 3- )l = Vlcos(ip+p)+V2 Sin(piip) (B36)

2 o p p 0



APPENDIX C

HUB MOMENT CALCULATIONS FROM MEASURED DATA

This appendix develops the transformations necessary to change the mea-

sured shaft bending moments and load cell moments to moments at the hub. The
shaft bending moments and load cell

SHub-pointatwhich blades moments were measured during wind-
are attached to shaft tunnel testing at some distance below

the hub; the moments obtained from
F " ¥'  the math model simulation were cal-

SMey culated at the hub. Therefore, it
was necessary to transfer the mea-
sured moments to the hub in order to
have a common point of comparison

x X Y, between measurement and simulation.
hsz The coordinate system used to cal-

_ Mx) culate the hub moments is shown in
x, sketch (e).

h Xr ill Shaft
hLCz II

I

II The load cell moments were mea-

sured in stationary coordinates a

MMLcdistance hLCz below the hub, while

the shaft moments were measured in
Xs rotating coordinates a distance hs

Sketch (e) below the hub. In calculating the
moments at the hub in rotating coor-

dinates, the following notation and

positive direction of moments are

adopted:

S otating 7
MLCx roting load cell roll moment (positive left roll)

FRLC = (Cl)

MLC y load cell pitch moment (positive nose-up)

x rotating shaft bending moment (positive left roll)
[M 1 = L(C2)
Sshaft bending moment (positive nose-up)

The desired hub moment in rotating coordinates is defined as
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Srotating hub roll moment (positive left roll)

My hub pitch moment (positive nose-up)

The force acting through the hub is defined as

SF rotatingF rOtating hub force along X

F ahub force along Y

The following moment balance can be written from sketch (e):

c= +hc x F (c5)

R = + h x FR (C6)
s B s B

Equations (C5) and (C6) can be solved simultaneously for the moments at
the hub from the known measurements of MR, hLC' and h . The hub moments
are then given by

hLC zM - hzMLCx

Ma (C7)x hLCz - hs z

hLCzM - hszLCy (C8)

MBy hLCz - hs z

The load cell moments expressed in equations (C7) and (C8) are in the
rotating coordinate system. Since the. measured load cell moments were
recorded in stationary coordinates, the transformation between the rotating
and stationary coordinate system must be obtained. This transformation, as
indicated in sketch (e), is given as

F- cos sini 0
S -sin O cos 0 (C9)

73 0 0 1 S3

Applying the transformation given by equation (09) to the MLCx and MLCy

terms in equations (C7) and (C8) produces the final form of the hub moments
in terms of the measured moments:
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hLCzMxr - hsz(MLCxcos + MLC sin (10)

x- hLCz - hs z  (C

hLCzMYr - hs(-MLCxsin p + MLC yos P) (C11)
MBy hLCz - hsz

In the mathematical model simu-
zzr lation of the rotor, the hub moments

were calculated from the blade flap-
Blade No. 3 ping angles and blade spring con-

stant. Sketch (f) shows the

coordinates used to obtain the hub
Blade No. 2 moments in the rotating coordinate

120 Z system. From the geometric location

120* "of the blades for a three-bladed
-:Yr rotor, the hub moments are expressed
M O, a s

X,
M = k -81 + 2 2 2)

Sketch (f)
(013)

The calculated hub moments given by equations (012) and (C13) were then

compared with the measured hub moments expressed by equations (ClO) and (Cl).
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TABLE 1.- ROTOR EQUATIONS IN STATE SPACE FORM

S
0 1 0 0 0 0 0 0 '0 x 0

1Q2 C2
(, -I 2 02 1) C22 +I- )C1 C( iy o

2
1 2( + -I)

_(I _i 2_ } C 2( z i )Q2-  k C2_Ks 2 _ 3 _2 2 ok + 2(i "i ) o 2 -c2( -I z 0 " 02C ok - C2 y 2 x C P-s Q ok - CC2Lz , o ( X X2c +

2 T GE I GE TGE IGE IGE GE IGE GE GE GE GE

' 3  0 0 0 1 0 0 0 0 0 0 x 3

-QC (I3kR-2I ) -(I3kG-I )2  )2- keC2 -Ks  - 2 2 0 2 2% s2 +2)+ -Isino2+-O-I GE IGE GE GE 0GE GE GE GE GE GE

is 0 0 0 0 1 0 0 x5  0

C2 2 + 0 _+3 2 0 -00 y2 4+2( oos +sin )B3+ - cs 2+osin 2B 8

+P2(1 - 1 COs 20+ osin 2 B2] + o 2,o+,ocos 2*+sin 2 )B2] + < cos I+sin i)B3 + y2 B5+2j(ooS @+sij )B4+, 2  - cos 2+(oSin 2 B eI

C2( -__ 2 x2o+0

S + 2 y y+ Q 2 2 
B4+2p(Cocos P+sin W)B3

y

2 - cos 2++osin 2 B2 tan 63

k (Ix+ y Z) 2 Q
2 + y 2[B4 sin + (sin2 o S 9 sin )B3] Ay+ 8

I Y

k7 0 0 0 0 00 1 x7 0

e3 Q2( G+IT, 0 2 2( X

- C2Y 
2 
Bh+22yos(4+1200) i OC(x+ =I) -

c2
y

2 
Bh+2p[Cocos( +1200) -) 3CC2(I+I I'

z  
0 0 - y C2{OBh+ Jcos( +1200)+ sin(, +1200)]B3 _ 0 0 y72 Bh+2Y[QoS(9+1200)+sin( +120o) B3+-0+

ClQj42[,,c(P10)y C2y 2+i~P10)B

+sin($l200)]B 3  +sin(9+1200)]3 + 9 2[Go+ ocos 2(9+120°)+si 2(t+120°)]B2} + +oo +10y9
2 
B5+2[ ocos(+1200)+sin(+120 )]Bh+u2 -1cos 2( +1200)+ osin 2(B+1+00 B3 6

S +2 - cos 2(+120
)  

2 2(+120
)  

+ y2 B+2[ocos(+20) in(+120)]B +sin(+120)]B3 x + y2{B3+[ocos( 120)+sin(+120

sin 2(t3+120) B2 + sin 2($+120)+co 0 n2 2)+o(

1/3 kB (IX+I Co-_IZ)Q2 1 eQ k

SC2 ( , 2 - C2(7- y O - - + -2 2{ sn +10 +ysn(+ 00 co( 100 in +1 0)B} +

2 + "v I E-e

Iy y Y y

9 0 0 0 0 00 0 0x9 0

C2Y22B4+2 [ocos( +240 - G[ x z -- C2
2  

2 [ 0 0 0 y oB4+ cos(+240 )  G 2 B + oS(+240 0)+sin(+2OO B3+2 - cos 2(+240) os in 2(+20 B2 e

+sin( C+2400)]
B 3  

n2+o
c
o
s (

s
+ 2 40
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TABLE 2.- ROTOR AND GYRO PARAMETERS

Parameters Nominal values
with allowed percentage variation

Rotor:

Number of blades (b) 3
Blade inertia (for each of
b blades)
Feathering inertia (Ix ) 0.54 kg-m2 (0.4 slug-ft2 )
Flapping inertia ( ) 363.4 kg-m 2 (268 slug-ft2 ) ± 1 percent
Inplane inertia (I z 363.9 kg-m2 (268.h slug-ft2 ) + 1 percent

Blade twist (el) -9.430 + 5 percent
Collective angle at root (80) 8.570 + 7 percent
Sweep angle (C ) 1.50 + 20 percent
Precone angle (?) 2.250 + 5 percent

Tip loss factor (B,) 0.97 ± 2 percent
Blade radius (Rb) 5.03 m (16.5 ft)
Blade chord width (c) 0.357 m (1.17 ft)
Airfoil type NACA 632015
Solidity 0.0675
Blade area 5.36 m2 (57.7 ft2 )
Disk area 79.46 m 2 (855.3 ft2 )
Mast angle forward tilt 0°

Rotor RPM (100 percent) 355.6
Hinge offset (e/Rb) 0.11 ± 30 percent

cpaRb
Lock number, y = 4.57 ± 10 percent

Spring constant (p from fig. 4) ±30 percent

k = I 2 2-1- (3/2)e tan 8
=y R-e t

Gyro:

Gyro inertia
Polar moment of inertia (13) 0.41 kg-m 2 (0.3 slug-ft 2) + 2 percent
Diametric moment of inertia (ID) 0.21 kg-m2 (0.15 slug-ft2 ) ' 2 percent

Gyro pitch link angle (*o) 600 + 2 percent
Mechanical advantage constant (C2) 0.87 + 3 percent
Gyro RPM (100 percent) 10,000

PRECEDING PAGE BLANK NOT FILMED
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TABLE 3.- PARAMETER ESTIMATES FOR STEADY-STATE LOCKED GYRO OPERATION

Value
Co.:dition Parameter

Nominal Estimated

8o  8.570 7.97
B% 0.97 0.95
c2  0.87 0.85
Iy 363.4 kg-m2  359.7 kg-m2

V = 41.2 m/sec (268 slug-ft2 ) (265.3 slug-ft2 )

(80 knots) Iz  363.9 kg-m2  360.2 kg-m2

i = 0.399 (268.4 slug-ft 2 ) (265.7 slug-ft 2 )

rpm = 55.5 percent y 4.67 5.13
k 141,092 Nm/rad 129,345 Nm/rad

(104,064 ft-lb/rad) (95,400 ft-lb/rad)

to  1.50 1.60

p 2.250 2.360

10 -0.012 -0.012 (fixed)

e/Rb 0.11 0.11

8o  8.570 7.970
BP 0.97 0.95
C2  0.87 0.85
I 363.4 kg-m2  359.7 kg-m2

V = 31.3 m/sec (268 slug-ft 2 ) (265.3 slug-ft 2 )
(61 knots) Iz  363.9 kg-m2  360.2 kg-m2

= 0.402 (268.4 slug-ft2) (265.7 slug-ft2 )

rpm = 41.6 percent y 4.69 5.16
k 125,214 Nm/rad 87,651 Nm/rad

(92,353 ft-lb/rad) (64,648 ft-lb/rad)

t o  1.50 1.60

p 2.250 2.140

Xo 0.005 0.005 (fixed)
e/Rb  0.11 0.11
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TABLE 4.- PARAMETER ESTIMATES FOR TRANSIENT FREE AND LOCKED GYRO OPERATION;
V = 36 m/sec (70 knots), 1 = 0.355, 54.2 percent rpm

Condition Values
of gyro Parameter Nominal Estimated

eo  8.570 9.170
61 -9.430 -10.930
B, 0.97 0.96

Free y 4.57 4.0
k8  138,752 Nm/rad 97,127 Nm/rad

(102,338 ft-lb/rad) (71,637 ft-lb/rad)
Co  1.50 1.80

eo  8.570 9.170
Bk 0.97 0.98
I 363.4 kg-m2  366.5 kg-m 2

(268 slug-ft2 ) (270.3 slug-ft2 )

Free Y 4.57 4.0
k 138,752 Nm/rad 97,127 Nm/rad

(102,338 ft-lb/rad) (71,637 ft-lb/rad)
Parameter Co 1.50 1.80

cases
studied e/Rb 0.11 0.15

o0 8.570 9.170
Bg 0.97 0.98
c2  0.87 0.85
I 363.4 kg-m2  359.7 kg-m2

(268 slug-ft 2 ) (265.3 slug-ft 2 )
Locked y 4.57 5.02

kg  138,752 Nm/rad 97,795 Nm/rad
(102,338 ft-lb/rad) (72,130 ft-lb/rad)

v 0.355 0.348
To 1.50 1.80
B 2.250 2.140

e/Rb 0.11 0.15
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TABLE 5.- SENSITIVITIES OF MODEL PARAMETERS

OBTAINED FROM IDENTIFICATION PROGRAM

Parameter Sensitivity
constant

60 4.0
01 3.2
B, 2.7

C2  1.1

y, (I yI ) .78

k .75
11 .72

kiR .57

I .57

co .52
B .31

Xo  .15
Cs  .13
ce .07
I x  .03
e .02

58 U.S. Government Printing Office: 1974-636-486/33 Region No. 3-II




